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We define measures to assess the excursion from the operational state of power grids due to perturbations.
We relate these measures to new topological indices which we introduce as generalized Kirchhoff indices.

1: Swing Equations

The transient dynamics of a power grid is governed by the Swing equations

Iiθ̈i +Diθ̇i = Pi −
∑

j

(

Bij|Vi||Vj| sin(θi − θj) +Gij|Vi|[|Vi| − |Vj| cos(θi − θj)]
)

, (1)

• Ii, Di the inertia and the damping at node i.

• Vj = |Vi|eiθj complex voltage at node j.

• Pi ≥ 0 (≤ 0) injected (consumed) active power at node i.

•Bij and Gij susceptance and conductance of the line connecting nodes i and j.

Working assumptions

• Consider PV-nodes and neglect voltage fluctuations |Vi| = 1.

•High voltage AC transmission lines have Gij/Bij ≈ 5%− 10%.
Neglecting the conductance (lossless approximation), the active power flow on a line is Pij =
Bij sin(θi − θj).
In this limit, analogy with the DC Josephson current between superconducting islands.

The considered model
θ̇i = Pi −

∑

j

Bij sin(θi − θj) . (2)

•Operational states of the power grid are stable fixed points of Eq. (2).

•We neglect the second order time derivative but the following calculations can be carried out with
inertia.

2: Linearization around a stable fixed point

We consider the power grid at a stable fixed point {θ(0)i } for the injections {P (0)
i }. Adding a perturbation

in the injections such that Pi(t) = P
(0)
i + δP (t), phases become time dependent θi(t) = θ

(0)
i + δθi(t)

and we get the vectorial equation,

δθ̇ = δP − L({θ(0)i }) δθ , (3)

where we introduced the weighted Laplacian matrix L({θ(0)i }) with matrix elements

Lij =







−Bij cos(θ
(0)
i − θ

(0)
j ) , i 6= j ,

∑

kBik cos(θ
(0)
i − θ

(0)
k ) , i = j .

(4)

L({θ(0)i }) has a single eigenvalue λ1 = 0 with eigenvector u1 = (1, 1, 1, ...1)/
√
n, and λi > 0, i =

2, 3, ...n. Eq. (3) can be solved by expanding the angle deviation over the eigenstate of L({θ(0)i }),

δθ(t) =
∑

α

cα(t)uα , (5)

with

cα(t) = e−λαtcα(0) + e−λαt
∫ t

0
dt′eλαt

′
δP (t′) · uα . (6)

3: Fragility Measures

To assess the magnitude of this excursion in the spirit of Refs. [2, 3, 4] we consider two fragility perfor-
mance measures

C1(T ) =
∑

i

∫ T

0
|δθi(t)−∆(t)|2dt =

∑

α≥2

∫ T

0
c2α(t)dt , (7a)

C2(T ) =
∑

i

∫ T

0
|δθ̇i(t)− ∆̇(t)|2dt =

∑

α≥2

∫ T

0
ċ2α(t)dt . (7b)

with ∆(t) = n−1∑

j δθj(t) and ∆̇(t) = n−1∑

j δθ̇j(t). In power grids C1(T ) is known as the coherence
of the operational state and C2(T ) is proportional to the primary control effort.

4: Generalized Kirchhoff Indices

The Kirchhoff index originally followed from the definition of the resistance distance in a graph [5]. To a
connected graph, one associates an electrical network where each edge is a resistor given by the inverse
edge weight in the original graph. The resistance distance is the resistance Ωij between any two nodes
i and j on the electrical network. The Kirchhoff index is then defined as [5]

Kf1 ≡
∑

i<j

Ωij , (8)

where the sum runs over all pairs of nodes in the graph. For a graph with Laplacian L, it has been
shown that Kf1 is given by the spectrum {λα} of L as [6, 7]

Kf1 = n
∑

α≥2

λ−1
α . (9)

Up to a normalization prefactor, Kf1 gives the mean resistance distance Ω over the whole graph.
Intuitively, one expects the dynamics of a complex system to depend not only on Ω, but on the full set
{Ωij}. Higher moments of {Ωij} are encoded in generalized Kirchhoff indices Kfm which we define as

Kfm = n
∑

α≥2

λ−m
α , (10)

for integers m. Below we show that C1,2 can be expressed as linear combinations of the Kfm’s corre-
sponding to L in Eq. (4).

5: Fragility Measures as functions of Kfm’s

Fragility measures C1 and C2 can be computed for various type of δP (t)
[1]. Here we show results for a time correlated noisy perturbation. On the
right we compare our analytical results to numerics for a cyclic network
with nearest and q -th neighbor coupling (see Ref. [1] for more numerics
and other types of perturbations) :

•Noisy perturbation : δPi(t1) δPj(t2) = δijδP
2
0i exp[−|t1− t2|/τ0]

C1(T ) = T
∑

α

∑

i∈Nn

δP 2
0i u

2
α,i

λα(λα + τ−1
0 )

+O(T 0) , (11a)

C2(T ) = (T/τ0)
∑

α

∑

i∈Nn

δP 2
0i u

2
α,i

λα + τ−1
0

+O(T 0) . (11b)

Averaging over an ensemble of perturbations and if τ−1
0 lies outside the

spectrum of L, the measures are directly expressable as infinite sums

over Kfm’s, 〈C1,2〉 = n−1 〈δP 2
0 〉T

∑∞
m=0C

(m)
1,2 with

C
(m)
1 =

{

(−1)m τ
(m+1)
0 Kf−m+1 , λατ0 < 1 ,

(−1)m τ−m
0 Kfm+2 , λατ0 > 1 ,

(12a)

C
(m)
2 =

{

(−1)m τm0 Kf−m , λατ0 < 1 ,

(−1)m τ
−(m+1)
0 Kfm+1 , λατ0 > 1 .

(12b)
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6: Conclusion

We have shown that the performance measures C1 and C2 depend on the overlap
between the perturbation vector δP0 and the eigenmodes uα of the weighted

Laplacian matrix L({θ(0)i }). From Eqs. (11)-(13) perturbations along the eigen-
modes with smallest Lyapunov exponents have the largest impact on the syn-
chronous state. After averaging over an ensemble of perturbation vectors, these
measures can be expressed as functions of new indices which we introduced as
generalized Kirchhoff indices and depend on both the topology of the network
and the stable fixed point of the dynamical system.

•Kfm’s → network’s global/average fragility.

•Kfm’s → easy to compute; only have to determine few of the smallest λα.
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